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Abstract. In this paper, we present a necessary and sufficient condition for a zero duality gap
between a primal optimization problem and its generalized augmented Lagrangian dual
problems. The condition is mainly expressed in the form of the lower semicontinuity of a
perturbation function at the origin. For a constrained optimization problem, a general
equivalence is established for zero duality gap properties defined by a general nonlinear
Lagrangian dual problem and a generalized augmented Lagrangian dual problem, respec-
tively. For a constrained optimization problem with both equality and inequality constraints,
we prove that first-order and second-order necessary optimality conditions of the augmented
Lagrangian problems with a convex quadratic augmenting function converge to that of the
original constrained program. For a mathematical program with only equality constraints, we
show that the second-order necessary conditions of general augmented Lagrangian problems
with a convex augmenting function converge to that of the original constrained program.

Key words: augmented Lagrangian, constraint qualification, optimality condition, perturba-
tion function, zero duality gap

1. Introduction

Augmented Lagrangian with a convex quadratic augmenting function was
formally introduced by Rockafellar [11, 12] to eliminate the duality gap
between the primal constrained optimization problem and its conven-
tional (linear) Lagrangian dual problem. Augmented Lagrangian method
has been widely and successfully used in the solution of constrained opti-
mization problems (see, e.g. [1]). Moreover, as noted in Teo et al [16],
any constrained optimal control problem can be reduced to a mathemati-
cal programming problem by using the control parametrization technique.
As a result, augmented Lagrangian method can be employed to solve
constrained optimal control problems. Recent interesting applications of
augmented Lagrangian to the study of linear programming can be found
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in [17, 8, 10]. More recently, a general (convex) augmented Lagrangian
was studied in [13]. Under suitable conditions, a zero duality gap theorem
was established without any convexity assumption (see [13], Theorem
11.59). A necessary and sufficient condition for the exact penalty repre-
sentation in the framework of the augmented Lagrangian was also
obtained, see ([13], Theorem 11.61). Rubinov et al. [14] introduced non-
linear Lagrangians for a constrained optimization problem. Under mild
conditions, a zero duality gap property was derived between the original
constrained program and its nonlinear Lagrangian dual problem. In [18§],
for a constrained program, under some conditions, an equivalence in
terms of zero duality gap properties was established between a class of
nonlinear Lagrangian dual problems and a class of augmented Lagrang-
ian dual problems. In [9], generalized augmented Lagrangian was intro-
duced by relaxing the convexity on the augmenting function. Zero duality
gap and exact penalization results were established under weaker condi-
tions than those of [13]. For a constrained optimization problem, under
weaker conditions than those of [18], an equivalence in terms of zero
duality gap properties was obtained between a class of generalized aug-
mented Lagrangian dual problems and a class of nonlinear Lagrangian
dual problems.

Another direction that is worth noting in the study of augmented
Lagrangian is the so-called exact augmented Lagrangian for inequality con-
strained nonlinear programming (see, e.g. [5-7]). Unlike the augmented
Lagrangian we mentioned above in which the penalty term only considers
the feasibility of the original constrained program, exact augmented
Lagrangian takes into account both the feasibility and the KKT conditions
of the original constrained program. Under certain conditions, the relation-
ship in terms of optimality conditions, local/global optimal solutions of the
augmented Lagrangian function and that of the original constrained opti-
mization problem has been established (see [5-7]).

In this paper, we shall not discuss exact augmented Lagrangian. Our
attention will be restricted to the augmented Lagrangian discussed in [11—
13, 9]. So, whenever we mention the term ‘“‘augmented Lagrangian™, it
should refer to the augmented Lagrangian discussed in [11-13, 9].

In [11], in the context of a constrained optimization problem, a necessary
and sufficient condition for a zero duality gap of the quadratic augmented
Lagrangian dual problem was given in terms of the lower semicontinuity
of a perturbation function (see ([11], Theorems 2 and 4)). Most recently,
Rubinov et al. [15] introduced a very general augmented Lagrangian and
nonlinear Lagrangian and established necessary and sufficient conditions
for the zero duality gap properties based on these two types of Lagrangian
functions in terms of the lower semicontinuity of certain perturbation func-
tions, respectively. In this paper, a necessary and sufficient condition for
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the zero duality gap property via a class of generalized augmented Lagran-
gians will be given in the form of the lower semicontinuity of a perturba-
tion function at the origin. This result combined with the necessary and
sufficient condition for a zero duality gap between a constrained program
and a nonlinear Lagrangian dual problem improve the equivalence result
in terms of zero duality gap property between the nonlinear Lagrangian
dual problem and a class of generalized augmented Lagrangian dual prob-
lems for a constrained program established in [9].

Despite the popularity of augmented Lagrangian in solving constrained
optimization problems, it is worth noting that the convergence of second-
order necessary optimality conditions of augmented Lagrangian problems
to that of the original constrained optimization problem has never been
investigated. Note that for a nonconvex program, conventional optimiza-
tion methods only generate points that satisfy (first-order or second-order)
necessary optimality conditions. Thus, it is both interesting and important
to consider the convergence of optimality conditions of the augmented
Lagrangian problems.

In this paper, in the context of a mathematical program with both equal-
ity and inequality constraints, we shall carry out convergence analysis of
the first-order and second-order necessary conditions for the augmented
Lagrangian with a convex quadratic augmenting function considered in
[11, 12]. In the context of a mathematical program with only equality con-
straints, we show that the second-order necessary conditions of the aug-
mented Lagrangian problems converge to that of the original constrained
program for general augmented Lagrangians with convex augmenting func-
tions. It should be mentioned that in both cases, explicit expressions of
these augmented Lagrangians can be derived. However, there is generally
no explicit expression for the augmented Lagrangian with a general convex
augmenting function if the constrained program contains both equality
and inequality constraints. So there exists some technical difficulty in carry-
ing out the convergence analysis for a general augmented Lagrangian with
a convex augmenting function if the constrained program contains both
equality and inequality constraints. Hence, this paper concentrates on the
convergence analysis for the above two cases where the augmented
Lagrangian can be explicitly written down.

2. Zero Duality Gap Via Generalized Augmented Lagrangians

Consider the following primal optimization problem:
(P)  inf o(x),

where ¢: R" — R = RU{—0c0, +00} is an extended real-valued function.
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Suppose that f(x,u): R" x R™ — R is a dualizing parameterization func-
tion of o, i.e.

f(x,0) = @(x), x€R"

Let 0:R™ — R be a generalized augmenting function, i.e. it is proper, Isc,
level-bounded (the set {u € R™ : o(u) <o} is always bounded for any
o € R), and attains its minimum 0 only at the origin 0 € R™.

The generalized augmented Lagrangian is defined as

[(x,p,r) = inf {f{x,u) = (y,u) +ro(u)}, xe R, yeR", r>0.

The generalized augmented Lagrangian dual function is

Y(y,r) = inf lx,p,r), yeR" r>0.

The generalized augmented Lagrangian dual problem is

(D) sup  Y(y,r).
(1) ER"(0+50)

Denote by Mp and Mp the optimal values of (P) and (D), respectively. It
is clear from [9] that weak duality holds

Mp < Mp.
Consequently, if Mp = —oo, then Mp = Mp = —oo. So we shall assume
that Mp > —oo in the study of necessary and sufficient conditions for

MP = MD to hold.
Define the perturbation function

p(u) = inf f(x,u), u€ R".
XER"
Obviously, p(0) = Mp.

THEOREM 2.1. Suppose that Mp > —oo. Then the zero duality gap prop-
erty Mp = Mp holds iff

(a) the perturbation function p(u) is Isc at 0 € R™,

(b) there exist y, i such that

W) = inf I(x, ) > —oc.
((b) & MD > —0).

Proof. The conclusion follows immediately from Theorems 2.2-2.4 and
Proposition 2.2 in [15]. O



FURTHER STUDY ON AUGMENTED LAGRANGIAN DUALITY THEORY 197

Remark. 2.1. A sufficient condition that guarantees (b) is that f{-,-) is
bounded below on R" x R™. In this case, we can take y =0 and any
r>0asr.

Consider the following constrained program:

(CP) inf fo(x),
s.t.g,
g(x) <0, j=1,....m,
gi(x)=0, j=m+1,....m,
where X is a subset of R", fo,gi:X — R, j=1,...,m are real-valued func-
tions. Denote by Xj the feasible set of (CP), i.e.
Xo={xeX :g(x)<0,j=1,...,m,gi(x)=0,j=m +1,...,m}

and by Mcp the optimal value of problem (CP).
Let

Sfo(x) if x € X,
o(x) = . .
+oo if x € R"\ Xy.

(1)

It is clear that (CP) is equivalent to the following unconstrained problem
(P’) in the sense that the two problems have the same set of (locally) opti-
mal solutions and the same optimal value

(P') inf o(x).

Define the dualizing parameterization function
Jep(x,u) = fo(x) 4+ 0 gm X{Om_ml}(G(x) +u)+0x(x), xe R", ueR",
(2)

where 0,,_,, is the origin of R"™™ G(x) = (g1(x),...,gu(x)), and Jp is the
indicator function of the set D, i.c.

(0 if zeD,
on(2) = {+oo else .

Thus, a class of generalized augmented Lagrangians for (CP) with the
dualizing parameterization function fcp defined by (2) can be expressed as

lep(x, y,r) = inf{ fep(x,u) — (y,u) +ro(u) : u € R"}, (3)

where ¢ is a generalized augmenting function. The corresponding
generalized augmented Lagrangian dual function is

Vep(y,r) = inf{lcp(x,y,7) : x € R"}, yeR", re(0,+00). (4)
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The corresponding generalized augmented Lagrangian dual problem is

(Dy) sup yepW, 7). (5)
()R (0, +00)

The optimal value of (D) is denoted by Mp,.
Define the perturbation function

pi(u) = inf{fcp(x,u) : x € R"}
=inf{fo(x) : x € X, gj(x) + u; <O,
J=1....m,g(x)+u=0j=m+1,...,m},

where u = (uy, ..., up).

Clearly, p;(0) = Mcp.

Now we apply Theorem 2.1 to (P') and the generalized augmented
Lagrangian dual problem (D;) and obtain the following result concerning
a necessary and sufficient condition for the zero duality gap between the
constrained program (CP) and its generalized augmented Lagrangian dual
problem (Dy).

THEOREM 2.2. Consider the problem (CP) and its generalized augmented
Lagrangian dual problem (Dy). Suppose that Mcp > —oo. Then the zero
duality gap property Mcp = My, holds iff

(@) p1(u) is Isc at u=0 € R™;

(b) there exist y, i such that

Yep(y,7) > —oo.
((b) < Mp, > —o0).

Remark 2.2. 1If fy is bounded below on X, then (b) holds. In this case,
Mcp = Mp, iff pi(u) is Isc at 0 € R”, which has nothing to do with the
choice of the generalized augmenting function ¢. In other words, if f; is
bounded below on X, and any one of the generalized augmented Lagrang-
ian dual problem yields a zero duality gap, then all the generalized aug-
mented Lagrangian dual problems yield a zero duality gap regardless of
the choice of the generalized augmenting function o.

To compare the zero duality gap property of the generalized augmented
Lagrangian dual problem with that of the nonlinear Lagrangian dual prob-
lem, we recall the nonlinear Lagrangian for (CP) and its nonlinear
Lagrangian dual problem (for details, see [14, 9]).

A basic assumption in the definition of a nonlinear Lagrangian is

fo(x) =0, VxeX.



FURTHER STUDY ON AUGMENTED LAGRANGIAN DUALITY THEORY 199

Let ¢:R: X R™ x R7™™ — R be a real-valued function. ¢ is said to be
increasing if, for any y',)? € Ry x R™ x R7™™ y? —yl € R implies
that c(y') < ¢(3?).

Consider increasing and Isc functions ¢ defined on R, x R™ x RY™™
having the following properties:

(A) 3a;>0,j=1,...,m such that, for any y= yo,¥1,---\Vm,

Vimi+1s -+, Ym) € R x R™ x RY™™ | we have
C(y) = maX{yo, A1V1y ey Ay Ymys Ay 1V 415 - -+ amym}-

(B) For any yy € R, we have ¢(»,0,...,0) = y.
Let ¢ be an increasing function with properties (A) and (B), and
F(X, d) = (f(x)a dlgl (x)7 R dnngml (X), dm1+l |gm1+l (X)|, s 7dm|gm(x)|)a

where d = (d,...,d,) € R} and x € X.
The function defined by

L(x,d) = c(F(x,d)), xe€X, de R}

is called a nonlinear Lagrangian corresponding to c.
The nonlinear Lagrangian dual function corresponding to ¢ is defined as

¢(d) = inf L(x,d), deR.

The nonlinear Lagrangian dual problem is defined by

(D2)  sup ¢(d). (6)
deR?}
Denote by Mp, the optimal value of problem (D,). Let u = (uy,...,un)
€ R". Denote

Xo={xeX:g(x)+u;<0,j=1,...,m,gi(x)+u; =0,
j=m+1,... m}.

The following result is concerned with a necessary and sufficient condition
for a zero duality gap between (CP) and its nonlinear Lagrangian dual
problem (D,). For the proof, we refer readers to [15].

THEOREM 2.3. Consider the constrained program (CP) and its nonlinear
Lagrangian dual problem (D,). Assume that fy(x) = 0, Vx € X. Suppose that
the increasing function c defining the nonlinear Lagrangian is continuous.
Then a necessary and sufficient condition for the zero duality gap
Mcp = Mp, to hold is that py(u) is Isc at u =0 € R".

The following equivalence result follows immediately from Theorems 2.2
and 2.3.
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THEOREM 2.4. Assume that fo(x) = 0,Yx € X. Consider the constrained
program (CP) and its generalized augmented Lagrangian dual problem (D)
and its nonlinear Lagrangian dual problem (D). Suppose that the increasing
function ¢ defining the nonlinear Lagrangian is continuous. Then the follow-
ing two statements are equivalent:

(a) the generalized augmented Lagrangian dual problem (D;) yields a
zero duality gap;
(b) the nonlinear Lagrangian dual problem (D) yields a zero duality gap.

Remark 2.3. In [9], the equivalence between zero duality gaps in terms
of generalized augmented Lagrangian and the nonlinear Lagrangian was
established under the continuity of the generalized augmenting function.
Thus, Theorem 2.4 improves this equivalence result.

3. Convergence of Optimality Conditions

In this section, we consider the constrained optimization problem (CP). We
assume that X = R" and all the functions involved in (CP) are twice contin-
uously differentiable. We shall discuss the convergence of second-order nec-
essary conditions of the augmented Lagrangian problems in two cases:

(a) The CP contains both equality and inequality constraints and the
augmenting function o(u) =1 /22;’;1%2 is used. The corresponding
augmented Lagrangian is called a proximal Lagrangian (see [13]).

(b) The CP contains only equality constraints and the augmenting func-
tion ¢(u) can be any convex function.

3.1. CONVERGENCE ANALYSIS FOR PROXIMAL LAGRANGIAN PROBLEMS

Suppose that {y*} € R™ is bounded and 0 < r. Consider the following
proximal Lagrangian problems:

(Pll() inf lz(x,yk, k),
XER"
where

m_((vigi(x) +5g(x) if g(x)= —y/r
h(x,p,r) =folx)+ ) 1
=

m
r
+ ) g +igm] >0
J=mi+1
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Let x € Xy. We denote

Jl(f) = {j:gj(f) = 0,]: 1,...,1’}’11}.
We say that the linear independence constraint qualification (LICQ) for
(CP) holds at x if {Vg;(x):je Ji(x)} U{Vgi(x):j=m +1,...,m} are
linearly independent.

Suppose that X € R" is a local optimal solution to (CP) and the LICQ
holds for (CP) at x. Then, the first-order necessary optimality condition is
that Ju; > 0,7 € Ji(X) and p;,j =my +1,...,m such that

m
VA + D Vg + Y 1Vg(x) =0 8)
JjeJi(X) Jj=m;+1
and the second-order necessary optimality condition is that the first-order
necessary condition holds, and for any d € R" satisfying

Vgi(¥)d =0, jeJi(x), ©)
ng(f)J: 0, j=m+1,...,m,
we have
d"fo(x)d+ > wd " Vg(x)d+ > pd Vig(x)d = 0. (10)
JENR®) JEm

It is known from [12] that /, may be only C"! (the first-order derivative is
only locally Lipschitz) in x no matter how smooth the functions involved
in (CP) are. In what follows, we first derive the first-order and second-
order necessary optimality conditions for (P}{)

Suppose that x¥ is a local optimal solution of (P}() Denote

I =g > —y_;‘/rk,j: L,...,m},
Jllc = {j:g_f(xk) = _)}_f/rk>j: 17"'aml}‘

The following first-order condition for (P}() can be straightforwardly
derived.

LEMMA 3.1 (First-order condition). Let x* € R" be a local optimal solu-
tion of (P}). Then

Vah (05 m) = VAN + Y 0 + g () Vg ()
jegrugk
m (11)
> 0 +ng() Ve (') = 0.

J=m+1
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The following definition of second-order directional derivative was intro-
duced by Ben-Tal and Zowe in [2, 3] (see also [19]).

DEFINITION 3.1. Let 4 : R" — R be a continuously differentiable func-
tion. The second-order directional derivative of /4 at x in the direction d is
defined as

W'(x:d,d) = lim 572 (h(x + sd + s*d) — h(x) — sVh(x)d)
if the right hand side limit exists.

LEMMA 3.2. Let J; € R',i=1,...,q. Suppose that
() f=R'— R'(i= 1,...,q9) are C"' and, for some positive integer

G <q,...[i,i=1,...,q1 are ...C;
(i1) for any d € R"

Viix)d=0,i=q:+1,...,q, (12)
Sl (x;d,d) exists, i=q1 +1,...,q;
(iil) x locally minimizes f =Y 1| Jf; over R".
Then
(a)

q
> LVfi(x) = 0;
i=1
(b) Vd € R",

q 4q
Z,lidrvzf,-(x)d—i- 2 Z A (x;d,d) > 0.
i=1

Proof. (a) is obvious.
(b) can be straightforwardly proved by applying Theorem 5.2 (i) of [19]
and formula (1.1) in [19]. O

LEMMA 3.3. Let h: R" — R be twice continuously differentiable. Then,
(h)* is CY and

2h(x)Vh(x)d + 2h(x)(d"V*h(x)d) if h(x) >0,

()" (x;dd) = $ 2(Vh(x)d)? if h(x) = 0,
0 otherwise .
Proof. The conclusion follows from Proposition 3.3 in [3]. ]

It is known from (][9], Example 2.1) that
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h(x,y.r) =hlx) +3 [}

£ Y e +igw]

Jj=mi+1

LEMMA 3.4. (Second-order condition). Suppose that x* is a local optimal of

(P}{) Then, the first-order necessary optimality condition (11) holds, and for any
de R"

d"fo(XF)d + Y [re(Vgi(F)d)? + (0 + rigi(¥)d Vg (M) d]

jeJ®
F VDTS (Ve () (14)
/«ejllc Jj=mi+1

+ O + gy () Vg ()l > 0.

Proof. Using Lemmas 3.2 and 3.3 and formula (13), the conclusion can
be directly proved. O

The following lemma is needed in the derivation of the convergence of the
second-order conditions.

LEMMA 3.5. Let {cf‘},fozl CR'i=1,...,q be sequences such that

lim cf-‘:c,«, i=1,...,q.
k—400
Suppose that {c;:i=1,...,q} are linearly independent. Then Vd €
{deR":cld=0,i=1,...,q}, there exists kK > 0 such that, when k >k,
there exists d* € R" satisfying (cf)Tdk =0,i=1,...,qand d* — d.

Proof. Tt follows directly from Corollary 11.3.4 of [4]. U

THEOREM 3.1 (Convergence of first-order conditions). Suppose that
{y*} € R™ is bounded, 0 < r;, — o0, x* satisfies the first-order necessary opti-
mality condition of (P}) statedin Lemma3.1,andx* — x € X,. Furthermore, sup-
posethatthe LICQ for (CP ) holds at x. Then the first-order necessary condition for
(CP)holdsat x.

k _ ¥ € X, we deduce that

JRUJE g (%),

Proof. Since x
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when k£ is sufficiently large. In the following, we assume that k is suffi-
ciently large. Set

M,k :y]’-‘ + regi(x"), j e n(x) NIk,
w=0, je @\ (15)
W=y g (), j=mi+ 1, m,
Then
w=0, jeJi(x), (16)

and (11) becomes

Vfo(x ZM,Vg; +Y g =0 (17)

jei(x Jj=mi+1

Now we prove by contradiction that the sequence {} .+

D m 1 |M, |} is bounded. Otherwise, assume without loss of generahty that
k
2 1% > Il - o0
and jeJ(x J=my+1
k
K

;. _
— W, je (X U{m +1,...,m}.
Yjero 1 2 gL

From (16), it is clear that
1;=0, j€Ji(x).

Dividing (17) by 3 e ) uj RED |,u/ | and passing to the limit, we get

Z ung] Z /“‘ngf =0.

jedi(x J=mi+1

This contradicts the LICQ of (CP) at X since >, o i+ D10, 1 gl = 1.
Hence, {3 ./« ,u] + D W] |} is bounded. Thus without loss of
generality, we assume that

‘u;c—>‘uj, je(x)U{m +1,....,m}. (18)
Clearly, from (16) we have

=0, jeJi(x),
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Taking the limit in (17) as kK — 400 and applying (18), we obtain the first-
order necessary condition of (CP). O

THEOREM 3.2 (Convergence of second-order conditions). Assume the
same conditions as in Theorem 3.1. Furthermore, assume the second-order
conditions stated in Lemma 3.4 hold. Then X satisfies the second-order neces-
sary condition of (CP).

Proof. First we note from Theorem 3.1 that x satisfies the first-order
condition of (CP). Since the LICQ holds for (CP) at x, it follows from
Lemma 3.5 that for any d € R” such that (9) holds, there exist & € R” such
that

Vg,-(xk)dk =0, jelJi(x),

Vgi(x)d* =0, j=m+1,....m (19)
and

dt—d (20)
Note that

JRUJE C U (%),

when £ is sufficiently large. As a result, (14) can be written as

d"fo(d+ Y (V) + (0f + gy (x)d" Vg () d]

jen(nJf*
+ > (V)T + Y (Vg
JeJi(x)NJ* J=m+1

+ (0 + g (x)d Vg (x")d] = 0.

Substituting (19) into (21) (with d replaced by &), we obtain

[ V() d + > 08+ rgi(xh)[dh) Vg () d*
jen(x)ng*

+ ) O0F + g (x)A) Vie(x")d* = 0.

j=mi+1

Using (15), we get
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[d o F)d+ > i dh) Vg (i) d

JEJ1(¥)

(22)

+ Z H, J"V2g(x")d* = 0.
Taking the limit in (22) as kK — 400, and applying (18) and (20), we obtain
(10). The proof is complete. Ll

3.2. CONVERGENCE ANALYSIS FOR GENERAL AUGMENTED LAGRANGIAN PROBLEMS

In this subsection, we assume that m; = 0. That is, the CP has only equal-
ity constraints. In this case, its augmented Lagrangian with convex aug-
menting function (in the sense of [13]) ¢ can be written as

ICP(vaG - +Zy/g] +V0 gl(X),...j—gm(X)), XER”, (23)

where y € R™,r > 0, and ¢ : R” — R is a proper convex augmenting func-
tion.

Suppose that {)*} is a sequence in R” and 0 < ry. The general aug-
mented Lagrangian problems are

(P,ZC) inf lcp(x, yk, ri).
XER"

The following lemma establishes a second-order necessary condition for a
local optimal solution to (P7).

LEMMA 3.6. Suppose that (—gi(x*),...,—gn(x*)) € dom(c)= {u€
R" : —00 < o(u) < +00} and that x* is a local optimal solution of (P) at
which the following condition holds:

m

ijng(xk) =0, we N(—g(x)|dom(c)) = w=0,

where w = (wi,...,wy) € R" g(x) = (g1(x),...,gm(x)), and N(—g(x)|
dom(c)) is the normal cone to dom(c) at —g(x*). Furthermore, suppose that

{Vgi(xK) :j=1,...,m} are linearly independent. Then, the second-order nec-
essary conditions of (P,zc) hold: there exist u}‘,j =1,...,m such that
Vfo(x +Zu, Vg(x) =0 (24)

and for any d € R" satisfying
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Vgi(x)d=0, j=1,...,m, (25)
there holds

dT V2 fo(x d+z Kd' V2 gi(x*)d = 0. (26)

Proof. Tt is easily seen that lcp(x, %, i) is a convex composite function
of the following two functions:

m
h(t,u) =1 =Y yiu+ro(u), 1€R, ueR”
J=1

F(X) = (f()(x)v _gl(x)a EER) _gm(x)), x € R",

where /1 is convex. That is,
Iep (x, %, 1) = h(F(x)).
Obviously,
dom(/) = R' x dom(a).

In addition, it can be verified that N(F(x*)|dom(h)) = {0} x N(—g(x")|
dom(s)). Indeed, dom(h) = R' x dom(s) is a covex subset of R!'x
R"™.y = (s,w) € N(F(x*)|dom(h)) if and only if for any (s/,)€ R'x
dom(o), there holds

(s = fo(x))(" = /o)) + (w + g(F) (W + g(x)) <0.

That is, (s — fo(x*))(s" — fo(x¥)) <0, Vs’ € R' (by setting w' = fo(x¥)) and
(w—+g(x*) (W +g(x*)) <0 (by setting s = f(x¥)). The former means
s € N(fo(xk)|R ) = {0} while the latter means w € N(—g(x*)|dom(c )) There-
fore, sVfo(x*) — Y7 w; Vgi(x*) =0 implies that Y7, w;V g;(x*) = 0.
Applying the condition (C), we have w = 0. Consequently, v = 0. Now we
apply ([20], Theorem 3.1) to (P7). There exists zF= (zf,... ,2f) ¢
0o(—g1(xF), ..., —gm(x¥)) such that

Vio(x") + Zyjng] )+ i Z Z#(=Vgi(x")) =0,
namely,
Vo (x Z — 12 )Vg(x*) =0 (27)

and
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m

max{d’ [V*fy(x Z - rkz )V2gi(xX))d : 25 € da(—gi(x5),. ..,

— gm(x ))}207 vd € K(x )

(28)
where
K(x)={de R" : 1V fo(x")d+1>_ Vgi(x")d
=1
+ro(—g1 () =tV g (), .., —gn(¥) — TV gu(x)d)
< re(=g1(x%), ..., —gm(x")) for some 7 > 0}.
Let
W=y —ngs J=lem
Then from (27), we have
Vo(x Z “Vgi(x)=o0. (29)
By the linear independence of {Vg;(x*) :j=1,...,m}, we see that the !
(j=1,...,m) are unique, having nothing to do with the choice of
2 € 0a(—gi(xF),..., —gu(x")). As a result, (28) can be written as
d"[V2fo(x") + Zufvzg, ]d=0, Vde K(x"). (30)

Note that any d satisfying (25) belongs to K(x*). Hence, for any d such
that (25) holds, (26) holds. O

Remark 3.1. It can be checked that if ¢ is finite on R™, then dom(g) =
R™. Tt follows that N(—g(x*)|dom(c)) = {0}. Hence, condition (C) holds
automatically.

THEOREM 3.3. Suppose that 0 < rx, x* — x € Xo. {Vg;(x):j=1,...,m}
are linearly independent. Then, {Vg;(x*) :j=1,...,m} are linearly indepen-
dent when k is sufficiently large. Further suppose that x* satisfies the second-
order necessary optimality conditions of (P,zc) stated in Lemma 3.6. Then X
satisfies the second-order conditions of (CP).

Proof. It is obvious that {Vg;(x*) :j=1,...,m} are linearly indepen-
dent when £ is sufficiently large since x* — x.
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By Lemma 3.6, (29) holds. By similar arguments as in the proof of The-
orem 3.1, we can prove that {} " ],u] |} is bounded. As a result, we can
assume Wlthout loss of generality that

kgrfoolu]k:‘uj’ j:17"'7m

Taking the limit in (29) as k — 400, we get
Vﬂ) + Z IU’IVgI

Now let d satisfy
Vg,-(f)d: 0, _f: 1, ..o.,m.

Since {Vgj(x):j=1,...,m} are linearly independent and x* — x, by
Lemma 3.5, there ex1sts dk — d such that

dI' V2 fo (XK di + Z kdIv?g;(xF)dy = 0.
Passing to the limit as k — +oo, we have

d" fo(x)d + ) wd" v gi(x)d = 0. O

J=1

4. Conclusions

We presented a necessary and sufficient condition for the zero duality gap
property via generalized augmented Lagrangian. For a constrained program,
an equivalence in terms of the zero duality gap property was established
between a general nonlinear Lagrangian dual problem and a class of general-
ized augmented Lagrangian dual problems. In the context of a mathematical
program with both equality and inequality constraints, we proved that the sec-
ond-order conditions of the Lagrangian problems with a convex quadratic
augmenting function converge to that of the original constrained problem. In
the context of a mathematical program with only equality constraints, for gen-
eral augmented Lagrangian problems with a convex augmenting function, we
showed that the second-order necessary conditions of the augmented
Lagrangian converge to that of the original constrained program.

However, for a mathematical program with both equality and inequality
constraints, we still do not know whether the second-order conditions of
general augmented Lagrangian problems with a convex augmenting func-
tion converge to that of the original constrained program or not. There
may exist some technical difficulty in answering this question. That is, there
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is generally no such a simple explicit expression as (23) for an augmented
Lagrangian if the original constrained program has both equality and
inequality constraints.
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