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Abstract. In this paper, we present a necessary and sufficient condition for a zero duality gap

between a primal optimization problem and its generalized augmented Lagrangian dual
problems. The condition is mainly expressed in the form of the lower semicontinuity of a
perturbation function at the origin. For a constrained optimization problem, a general

equivalence is established for zero duality gap properties defined by a general nonlinear
Lagrangian dual problem and a generalized augmented Lagrangian dual problem, respec-
tively. For a constrained optimization problem with both equality and inequality constraints,

we prove that first-order and second-order necessary optimality conditions of the augmented
Lagrangian problems with a convex quadratic augmenting function converge to that of the
original constrained program. For a mathematical program with only equality constraints, we
show that the second-order necessary conditions of general augmented Lagrangian problems

with a convex augmenting function converge to that of the original constrained program.

Key words: augmented Lagrangian, constraint qualification, optimality condition, perturba-
tion function, zero duality gap

1. Introduction

Augmented Lagrangian with a convex quadratic augmenting function was
formally introduced by Rockafellar [11, 12] to eliminate the duality gap
between the primal constrained optimization problem and its conven-
tional (linear) Lagrangian dual problem. Augmented Lagrangian method
has been widely and successfully used in the solution of constrained opti-
mization problems (see, e.g. [1]). Moreover, as noted in Teo et al [16],
any constrained optimal control problem can be reduced to a mathemati-
cal programming problem by using the control parametrization technique.
As a result, augmented Lagrangian method can be employed to solve
constrained optimal control problems. Recent interesting applications of
augmented Lagrangian to the study of linear programming can be found
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in [17, 8, 10]. More recently, a general (convex) augmented Lagrangian
was studied in [13]. Under suitable conditions, a zero duality gap theorem
was established without any convexity assumption (see [13], Theorem
11.59). A necessary and sufficient condition for the exact penalty repre-
sentation in the framework of the augmented Lagrangian was also
obtained, see ([13], Theorem 11.61). Rubinov et al. [14] introduced non-
linear Lagrangians for a constrained optimization problem. Under mild
conditions, a zero duality gap property was derived between the original
constrained program and its nonlinear Lagrangian dual problem. In [18],
for a constrained program, under some conditions, an equivalence in
terms of zero duality gap properties was established between a class of
nonlinear Lagrangian dual problems and a class of augmented Lagrang-
ian dual problems. In [9], generalized augmented Lagrangian was intro-
duced by relaxing the convexity on the augmenting function. Zero duality
gap and exact penalization results were established under weaker condi-
tions than those of [13]. For a constrained optimization problem, under
weaker conditions than those of [18], an equivalence in terms of zero
duality gap properties was obtained between a class of generalized aug-
mented Lagrangian dual problems and a class of nonlinear Lagrangian
dual problems.
Another direction that is worth noting in the study of augmented

Lagrangian is the so-called exact augmented Lagrangian for inequality con-
strained nonlinear programming (see, e.g. [5–7]). Unlike the augmented
Lagrangian we mentioned above in which the penalty term only considers
the feasibility of the original constrained program, exact augmented
Lagrangian takes into account both the feasibility and the KKT conditions
of the original constrained program. Under certain conditions, the relation-
ship in terms of optimality conditions, local/global optimal solutions of the
augmented Lagrangian function and that of the original constrained opti-
mization problem has been established (see [5–7]).
In this paper, we shall not discuss exact augmented Lagrangian. Our

attention will be restricted to the augmented Lagrangian discussed in [11–
13, 9]. So, whenever we mention the term ‘‘augmented Lagrangian’’, it
should refer to the augmented Lagrangian discussed in [11–13, 9].
In [11], in the context of a constrained optimization problem, a necessary

and sufficient condition for a zero duality gap of the quadratic augmented
Lagrangian dual problem was given in terms of the lower semicontinuity
of a perturbation function (see ([11], Theorems 2 and 4)). Most recently,
Rubinov et al. [15] introduced a very general augmented Lagrangian and
nonlinear Lagrangian and established necessary and sufficient conditions
for the zero duality gap properties based on these two types of Lagrangian
functions in terms of the lower semicontinuity of certain perturbation func-
tions, respectively. In this paper, a necessary and sufficient condition for
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the zero duality gap property via a class of generalized augmented Lagran-
gians will be given in the form of the lower semicontinuity of a perturba-
tion function at the origin. This result combined with the necessary and
sufficient condition for a zero duality gap between a constrained program
and a nonlinear Lagrangian dual problem improve the equivalence result
in terms of zero duality gap property between the nonlinear Lagrangian
dual problem and a class of generalized augmented Lagrangian dual prob-
lems for a constrained program established in [9].
Despite the popularity of augmented Lagrangian in solving constrained

optimization problems, it is worth noting that the convergence of second-
order necessary optimality conditions of augmented Lagrangian problems
to that of the original constrained optimization problem has never been
investigated. Note that for a nonconvex program, conventional optimiza-
tion methods only generate points that satisfy (first-order or second-order)
necessary optimality conditions. Thus, it is both interesting and important
to consider the convergence of optimality conditions of the augmented
Lagrangian problems.
In this paper, in the context of a mathematical program with both equal-

ity and inequality constraints, we shall carry out convergence analysis of
the first-order and second-order necessary conditions for the augmented
Lagrangian with a convex quadratic augmenting function considered in
[11, 12]. In the context of a mathematical program with only equality con-
straints, we show that the second-order necessary conditions of the aug-
mented Lagrangian problems converge to that of the original constrained
program for general augmented Lagrangians with convex augmenting func-
tions. It should be mentioned that in both cases, explicit expressions of
these augmented Lagrangians can be derived. However, there is generally
no explicit expression for the augmented Lagrangian with a general convex
augmenting function if the constrained program contains both equality
and inequality constraints. So there exists some technical difficulty in carry-
ing out the convergence analysis for a general augmented Lagrangian with
a convex augmenting function if the constrained program contains both
equality and inequality constraints. Hence, this paper concentrates on the
convergence analysis for the above two cases where the augmented
Lagrangian can be explicitly written down.

2. Zero Duality Gap Via Generalized Augmented Lagrangians

Consider the following primal optimization problem:

ðPÞ inf
x2Rn

uðxÞ;

where u: Rn ! �R ¼ R [ f�1;þ1g is an extended real-valued function.
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Suppose that fðx; uÞ:Rn � Rm ! �R is a dualizing parameterization func-
tion of u, i.e.

fðx; 0Þ ¼ uðxÞ; x 2 Rn:

Let r:Rm ! �R be a generalized augmenting function, i.e. it is proper, lsc,
level-bounded (the set fu 2 Rm : rðuÞO ag is always bounded for any
a 2 RÞ, and attains its minimum 0 only at the origin 0 2 Rm.
The generalized augmented Lagrangian is defined as

lðx; y; rÞ ¼ inf
u2Rm
f fðx; uÞ � hy; ui þ rrðuÞg; x 2 Rn; y 2 Rm; r > 0:

The generalized augmented Lagrangian dual function is

wðy; rÞ ¼ inf
x2Rn

lðx; y; rÞ; y 2 Rm; r > 0:

The generalized augmented Lagrangian dual problem is

(D) sup
ðy;rÞ2Rm�ð0;þ1Þ

wðy; rÞ:

Denote by MP and MD the optimal values of (P) and (D), respectively. It
is clear from [9] that weak duality holds

MD OMP:

Consequently, if MP ¼ �1, then MD ¼MP ¼ �1. So we shall assume
that MP > �1 in the study of necessary and sufficient conditions for
MP ¼MD to hold.
Define the perturbation function

pðuÞ ¼ inf
x2Rn

fðx; uÞ; u 2 Rm:

Obviously, pð0Þ ¼MP:

THEOREM 2.1. Suppose that MP > �1. Then the zero duality gap prop-
erty MP ¼MD holds iff

(a) the perturbation function pðuÞ is lsc at 0 2 Rm,
(b) there exist �y; �r such that

wð�y; �rÞ ¼ inf
x2Rn

lðx; �y; �rÞ > �1:
((b) ,MD > �1Þ.

Proof. The conclusion follows immediately from Theorems 2.2–2.4 and
Proposition 2.2 in [15]. (
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Remark. 2.1. A sufficient condition that guarantees (b) is that fð�; �Þ is
bounded below on Rn � Rm. In this case, we can take �y ¼ 0 and any
r > 0 as �r.
Consider the following constrained program:

(CP) inf f0ðxÞ;
s.t:2;

gjðxÞO 0; j ¼ 1; . . . ;m1;

gjðxÞ ¼ 0; j ¼ m1 þ 1; . . . ;m;

where X is a subset of Rn; f0; gj:X! R; j ¼ 1; . . . ;m are real-valued func-
tions. Denote by X0 the feasible set of (CP), i.e.

X0 ¼ fx 2 X : gjðxÞO0; j ¼ 1; . . . ;m1; gjðxÞ ¼ 0; j ¼ m1 þ 1; . . . ;mg

and by MCP the optimal value of problem (CP).
Let

uðxÞ ¼
f0ðxÞ if x 2 X0,

þ1 if x 2 RnnX0:

�
ð1Þ

It is clear that (CP) is equivalent to the following unconstrained problem
(P0) in the sense that the two problems have the same set of (locally) opti-
mal solutions and the same optimal value

ðP0 Þ inf
x2Rn

uðxÞ:

Define the dualizing parameterization function

fCPðx; uÞ ¼ f0ðxÞ þ dRm1� �f0m�m1
gðGðxÞ þ uÞ þ dXðxÞ; x 2 Rn; u 2 Rm;

ð2Þ
where 0m�m1

is the origin of Rm�m1 ;GðxÞ ¼ ðg1ðxÞ; . . . ; gmðxÞÞ, and dD is the
indicator function of the set D, i.e.

dDðzÞ ¼ 0 if z 2 D,
þ1 else .

�

Thus, a class of generalized augmented Lagrangians for (CP) with the
dualizing parameterization function fCP defined by (2) can be expressed as

lCPðx; y; rÞ ¼ inff fCPðx; uÞ � hy; ui þ rrðuÞ : u 2 Rmg; ð3Þ
where r is a generalized augmenting function. The corresponding
generalized augmented Lagrangian dual function is

wCPðy; rÞ ¼ infflCPðx; y; rÞ : x 2 Rng; y 2 Rm; r 2 ð0;þ1Þ: ð4Þ
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The corresponding generalized augmented Lagrangian dual problem is

ðD1Þ sup
ðy;rÞ2Rm�ð0;þ1Þ

wCPðy; rÞ: ð5Þ

The optimal value of ðD1Þ is denoted by MD1
.

Define the perturbation function

p1ðuÞ ¼ infffCPðx; uÞ : x 2 Rng
¼ infff0ðxÞ : x 2 X; gjðxÞ þ uj O 0;

j ¼ 1; . . . ;m1; gjðxÞ þ uj ¼ 0; j ¼ m1 þ 1; . . . ;mg;

where u ¼ ðu1; . . . ; umÞ.
Clearly, p1ð0Þ ¼MCP:
Now we apply Theorem 2.1 to ðP0Þ and the generalized augmented

Lagrangian dual problem ðD1Þ and obtain the following result concerning
a necessary and sufficient condition for the zero duality gap between the
constrained program (CP) and its generalized augmented Lagrangian dual
problem ðD1Þ:

THEOREM 2.2. Consider the problem (CP) and its generalized augmented
Lagrangian dual problem ðD1Þ: Suppose that MCP > �1. Then the zero
duality gap property MCP ¼MD1

holds iff
(a) p1ðuÞ is lsc at u ¼ 0 2 Rm;
(b) there exist �y; �r such that

wCPð�y; �rÞ > �1:
((b) ,MD1

> �1Þ:

Remark 2.2. If f0 is bounded below on X, then (b) holds. In this case,
MCP ¼MD1

iff p1ðuÞ is lsc at 0 2 Rm, which has nothing to do with the
choice of the generalized augmenting function r. In other words, if f0 is
bounded below on X, and any one of the generalized augmented Lagrang-
ian dual problem yields a zero duality gap, then all the generalized aug-
mented Lagrangian dual problems yield a zero duality gap regardless of
the choice of the generalized augmenting function r.
To compare the zero duality gap property of the generalized augmented

Lagrangian dual problem with that of the nonlinear Lagrangian dual prob-
lem, we recall the nonlinear Lagrangian for (CP) and its nonlinear
Lagrangian dual problem (for details, see [14, 9]).
A basic assumption in the definition of a nonlinear Lagrangian is

foðxÞP 0; 8x 2 X:
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Let c:Rþ � Rm1 � Rm�m1
þ ! R be a real-valued function. c is said to be

increasing if, for any y1; y2 2 Rþ � Rm1 � Rm�m1
þ ; y2 � y1 2 Rmþ1

þ implies
that cðy1ÞO cðy2Þ:
Consider increasing and lsc functions c defined on Rþ � Rm1 � Rm�m1

þ
having the following properties:
(A) 9aj > 0; j ¼ 1; . . . ;m such that, for any y ¼ ðy0; y1; . . . ; ym1

;
ym1þ1; . . . ; ymÞ 2 Rþ � Rm1 � Rm�m1

þ , we have

cðyÞP maxfy0; a1y1; . . . ; am1
ym1

; am1þ1ym1þ1; . . . ; amymg:
(B) For any y0 2 Rþ, we have cðy0; 0; . . . ; 0Þ ¼ y0:

Let c be an increasing function with properties (A) and (B), and

Fðx; dÞ ¼ ðfðxÞ; d1g1ðxÞ; . . . ; dm1
gm1
ðxÞ; dm1þ1jgm1þ1ðxÞj; . . . ; dmjgmðxÞjÞ;

where d ¼ ðd1; . . . ; dmÞ 2 Rm
þ and x 2 X.

The function defined by

Lðx; dÞ ¼ cðFðx; dÞÞ; x 2 X; d 2 Rm
þ

is called a nonlinear Lagrangian corresponding to c.
The nonlinear Lagrangian dual function corresponding to c is defined as

/ðdÞ ¼ inf
x2X

Lðx; dÞ; d 2 Rm
þ:

The nonlinear Lagrangian dual problem is defined by

ðD2Þ sup
d2Rm

þ

/ðdÞ: ð6Þ

Denote by MD2
the optimal value of problem ðD2Þ. Let u ¼ ðu1; . . . ; umÞ

2 Rm: Denote

Xu ¼fx 2 X : gjðxÞ þ uj O 0; j ¼ 1; . . . ;m1; gjðxÞ þ uj ¼ 0;

j ¼m1 þ 1; . . . ;mg:
The following result is concerned with a necessary and sufficient condition
for a zero duality gap between (CP) and its nonlinear Lagrangian dual
problem ðD2Þ. For the proof, we refer readers to [15].

THEOREM 2.3. Consider the constrained program (CP) and its nonlinear
Lagrangian dual problem ðD2Þ. Assume that f0ðxÞP 0; 8x 2 X. Suppose that
the increasing function c defining the nonlinear Lagrangian is continuous.
Then a necessary and sufficient condition for the zero duality gap
MCP ¼MD2

to hold is that p1ðuÞ is lsc at u ¼ 0 2 Rn:

The following equivalence result follows immediately from Theorems 2.2
and 2.3.
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THEOREM 2.4. Assume that f0ðxÞP 0; 8x 2 X: Consider the constrained
program (CP) and its generalized augmented Lagrangian dual problem ðD1Þ
and its nonlinear Lagrangian dual problem ðD2Þ. Suppose that the increasing
function c defining the nonlinear Lagrangian is continuous. Then the follow-
ing two statements are equivalent:

(a) the generalized augmented Lagrangian dual problem ðD2Þ yields a
zero duality gap;

(b) the nonlinear Lagrangian dual problem ðD2Þ yields a zero duality gap.

Remark 2.3. In [9], the equivalence between zero duality gaps in terms
of generalized augmented Lagrangian and the nonlinear Lagrangian was
established under the continuity of the generalized augmenting function.
Thus, Theorem 2.4 improves this equivalence result.

3. Convergence of Optimality Conditions

In this section, we consider the constrained optimization problem (CP). We
assume that X ¼ Rn and all the functions involved in (CP) are twice contin-
uously differentiable. We shall discuss the convergence of second-order nec-
essary conditions of the augmented Lagrangian problems in two cases:

(a) The CP contains both equality and inequality constraints and the
augmenting function rðuÞ ¼ 1=2Rm

j¼1u
2
j is used. The corresponding

augmented Lagrangian is called a proximal Lagrangian (see [13]).
(b) The CP contains only equality constraints and the augmenting func-

tion r(u) can be any convex function.

3.1. CONVERGENCE ANALYSIS FOR PROXIMAL LAGRANGIAN PROBLEMS

Suppose that fykg � Rm is bounded and 0 < rk: Consider the following
proximal Lagrangian problems:

ðP1kÞ inf
x2Rn

l2ðx; yk ; rkÞ;

where

l2ðx; y; rÞ ¼ f0ðxÞ þ
Xm1

j¼1

yjgjðxÞ þ r
2 g

2
j ðxÞ if gjðxÞP� yj=r

�y2j
2r if gjðxÞ < �yj=r

8<
:

þ
Xm

j¼m1þ1
yjgjðxÞ þ

r

2
g2j ðxÞ

h i
; r > 0:

ð7Þ
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Let �x 2 X0. We denote

J1ð�xÞ ¼ fj : gjð�xÞ ¼ 0; j ¼ 1; . . . ;m1g:

We say that the linear independence constraint qualification (LICQ) for
(CP) holds at �x if frgjð�xÞ : j 2 J1ð�xÞg [ frgjð�xÞ : j ¼ m1 þ 1; . . . ;mg are
linearly independent.
Suppose that �x 2 Rn is a local optimal solution to (CP) and the LICQ

holds for (CP) at �x. Then, the first-order necessary optimality condition is
that 9lj P 0; j 2 J1ð�xÞ and lj; j ¼ m1 þ 1; . . . ;m such that

rf0ð�xÞ þ
X

j2J1ð�xÞ
ljrgjð�xÞ þ

Xm
j¼m1þ1

ljrgjð�xÞ ¼ 0 ð8Þ

and the second-order necessary optimality condition is that the first-order
necessary condition holds, and for any �d 2 Rn satisfying

rgjð�xÞ �d ¼ 0; j 2 J1ð�xÞ;
rgjð�xÞ �d ¼ 0; j ¼ m1 þ 1; . . . ;m;

ð9Þ

we have

�d Tr2f0ð�xÞ �dþ
X

j2J1ð�xÞ
lj

�d Tr2gjð�xÞ �dþ
Xm

j¼m1þ1

lj
�d Tr2gjð�xÞ �dP 0: ð10Þ

It is known from [12] that l2 may be only C1;1 (the first-order derivative is
only locally Lipschitz) in x no matter how smooth the functions involved
in (CP) are. In what follows, we first derive the first-order and second-
order necessary optimality conditions for ðP1

kÞ.
Suppose that xk is a local optimal solution of ðP1

kÞ. Denote

Jþk1 ¼ fj : gjðxkÞ > �ykj =rk; j ¼ 1; . . . ;m1g;
Jk1 ¼ fj : gjðxkÞ ¼ �ykj =rk; j ¼ 1; . . . ;m1g:

The following first-order condition for ðP1
kÞ can be straightforwardly

derived.

LEMMA 3.1 (First-order condition). Let xk 2 Rn be a local optimal solu-
tion of ðP1

kÞ. Then

rxl2ðxk; yk; rkÞ ¼ rf0ðxkÞ þ
X

j2Jþk
1
[Jk

1

ðykj þ rkgjðxkÞÞrgjðxkÞ

Xm
j¼m1þ1

ðykj þ rkgjðxkÞÞrgjðxkÞ ¼ 0:

ð11Þ
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The following definition of second-order directional derivative was intro-
duced by Ben-Tal and Zowe in [2, 3] (see also [19]).

DEFINITION 3.1. Let h : Rn ! R be a continuously differentiable func-
tion. The second-order directional derivative of h at x in the direction d is
defined as

h00ðx; d; dÞ ¼ lim
s!0þ

s�2ðhðxþ sdþ s2dÞ � hðxÞ � srhðxÞdÞ

if the right hand side limit exists.

LEMMA 3.2. Let ki 2 R1; i ¼ 1; . . . ; q:Suppose that

(i) fi:R
n ! R1ði ¼ 1; . . . ; qÞ are C1;1 and, for some positive integer

q1 O q; . . . fi; i ¼ 1; . . . ; q1 are . . .C2;
(ii) for any d 2 Rn

rfiðxÞd ¼ 0; i ¼ q1 þ 1; . . . ; q; ð12Þ
f00i ðx; d; dÞ exists, i ¼ q1 þ 1; . . . ; q;
(iii) x locally minimizes f ¼

Pq
i¼1 kifi over Rn.

Then
(a)

Xq
i¼1

kirfiðxÞ ¼ 0;

(b) 8d 2 Rn;

Xq1
i¼1

kid
Tr2fiðxÞdþ 2

Xq
i¼q1þ1

kif
00
i ðx; d; dÞP 0:

Proof. (a) is obvious.
(b) can be straightforwardly proved by applying Theorem 5.2 (i) of [19]
and formula (1.1) in [19]. (

LEMMA 3.3. Let h : Rn ! R be twice continuously differentiable. Then,
ðhþÞ2 is C1;1 and

½ðhþÞ2�00ðx; d; dÞ ¼
2hðxÞrhðxÞdþ 2hðxÞðdTr2hðxÞdÞ if hðxÞ > 0,

2ðrhðxÞdÞ2 if hðxÞ ¼ 0,

0 otherwise .

8><
>:

Proof. The conclusion follows from Proposition 3.3 in [3]. h

It is known from ([9], Example 2.1) that
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l2ðx; y; rÞ ¼ f0ðxÞ þ
r

2

Xm1

j¼1

yj
r
þ gjðxÞ

� �þ2
�
Xm1

j¼1

yj
r

� �2" #

þ
Xm

j¼m1þ1
yjgjðxÞ þ

r

2
g2j ðxÞ

h i
:

ð13Þ

LEMMA 3.4. (Second-order condition). Suppose that xk is a local optimal of
ðP1

kÞ. Then, the first-order necessary optimality condition (11) holds, and for any
d 2 Rn

dTr2f0ðxkÞdþ
X
j2Jþk

1

½rkðrgjðxkÞdÞ2 þ ðykj þ rkgjðxkÞÞdTr2gjðxkÞd�

þ
X
j2Jk

1

½ðrgjðxkÞdÞþ�2 þ
Xm

j¼m1þ1
½rkðrgjðxkÞdÞ2

þ ðykj þ rkgjðxkÞÞdTr2gjðxkÞd�P 0:

ð14Þ

Proof. Using Lemmas 3.2 and 3.3 and formula (13), the conclusion can
be directly proved. (
The following lemma is needed in the derivation of the convergence of the
second-order conditions.

LEMMA 3.5. Let fcki g
1
k¼1 � Rn; i ¼ 1; . . . ; q be sequences such that

lim
k!þ1

cki ¼ ci; i ¼ 1; . . . ; q:

Suppose that fci : i ¼ 1; . . . ; qg are linearly independent. Then 8 �d 2
fd 2 Rn : cTi d ¼ 0; i ¼ 1; . . . ; qg, there exists �k > 0 such that, when kP �k,
there exists dk 2 Rn satisfying ðcki Þ

Tdk ¼ 0, i ¼ 1; . . . ; q and dk ! �d.

Proof. It follows directly from Corollary II.3.4 of [4]. h

THEOREM 3.1 (Convergence of first-order conditions). Suppose that
fykg � Rm is bounded, 0 < rk ! þ1;xk satisfies the first-order necessary opti-
malityconditionof ðP1

kÞ stated inLemma3.1,andxk ! �x 2 X0.Furthermore, sup-
posethattheLICQfor(CP)holdsat �x.Thenthefirst-ordernecessaryconditionfor
(CP)holdsat �x.

Proof. Since xk ! �x 2 X0, we deduce that

Jþk1 [ Jk1 � J1ð�xÞ;
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when k is sufficiently large. In the following, we assume that k is suffi-
ciently large. Set

lk
j ¼ ykj þ rkgjðxkÞ; j 2 J1ð�xÞ \ Jþk1 ;

lk
j ¼ 0; j 2 J1ð�xÞnJþk1 ;

lk
j ¼ ykj þ rkgjðxkÞ; j ¼ m1 þ 1; . . . ;m:

ð15Þ

Then

lk
j P 0; j 2 J1ð�xÞ; ð16Þ

and (11) becomes

rf0ðxkÞ þ
X

j2J1ð�xÞ
lk
j r gjðxkÞ þ

Xm
j¼m1þ1

lk
j r gjðxkÞ ¼ 0: ð17Þ

Now we prove by contradiction that the sequence f
P

j2Jð�xÞ l
k
jþPm

j¼m1þ1 jl
k
j jg is bounded. Otherwise, assume without loss of generality that

X
j2Jð�xÞ

lk
j þ

Xm
j¼m1þ1

jlk
j j ! þ1

and

lk
jP

j2Jð�xÞ l
k
j þ

Pm
j¼m1þ1 jl

k
j j
! l0j; j 2 J1ð�xÞ [ fm1 þ 1; . . . ;mg:

From (16), it is clear that

l0jP0; j 2 J1ð�xÞ:

Dividing (17) by
P

j2Jð�xÞ l
k
j þ

Pm
j¼m1þ1 jl

k
j j and passing to the limit, we get

X
j2J1ð�xÞ

l0jr gjð�xÞ þ
Xm

j¼m1þ1
l0jr gjð�xÞ ¼ 0:

This contradicts the LICQ of (CP) at �x since
P

j2J1ð�xÞ l
0
j þ
Pm

j¼m1þ1 jl
0
jj ¼ 1:

Hence, f
P

j2J1ð�xÞ l
k
j þ

Pm
j¼m1þ1 jl

k
j jg is bounded. Thus, without loss of

generality, we assume that

lk
j ! lj; j 2 J1ð�xÞ [ fm1 þ 1; . . . ;mg: ð18Þ

Clearly, from (16) we have

l0j P 0; j 2 J1ð�xÞ:
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Taking the limit in (17) as k! þ1 and applying (18), we obtain the first-
order necessary condition of (CP). (

THEOREM 3.2 (Convergence of second-order conditions). Assume the
same conditions as in Theorem 3.1. Furthermore, assume the second-order
conditions stated in Lemma 3.4 hold. Then �x satisfies the second-order neces-
sary condition of (CP).

Proof. First we note from Theorem 3.1 that �x satisfies the first-order
condition of (CP). Since the LICQ holds for (CP) at �x, it follows from
Lemma 3.5 that for any �d 2 Rn such that (9) holds, there exist dk 2 Rn such
that

rgjðxkÞd k ¼ 0; j 2 J1ð�xÞ;
rgjðxkÞd k ¼ 0; j ¼ m1 þ 1; . . . ;m

ð19Þ

and

d k ! �d: ð20Þ
Note that

Jþk1 [ Jk1 � J1ð�xÞ;

when k is sufficiently large. As a result, (14) can be written as

dTr2f0ðxkÞdþ
X

j2J1ð�xÞ\Jþk1

½rkðr gjðxkÞdÞ2 þ ðykj þ rkgjðxkÞÞdTr2gjðxkÞd�

þ
X

j2J1ð�xÞ\Jk1

½ðr gjðxkÞdÞþ�2 þ
Xm

j¼m1þ1
½rkðr gjðxkÞdÞ2

þ ðykj þ rkgjðxkÞÞd Tr2gjðxkÞd�P 0:

ð21Þ
Substituting (19) into (21) (with d replaced by dk), we obtain

½dk�Tr2f0ðxkÞdk þ
X

j2J1ð�xÞ\Jþk1

ðykj þ rkgjðxkÞÞ½d k�Tr2gjðxkÞd k

þ
Xm

j¼m1þ1
ðykj þ rkgjðx kÞÞ½d k�Tr2gjðx kÞd k P 0:

Using (15), we get
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½d k�Tr2f0ðxkÞdþ
X

j2J1ð�xÞ
lk
j ½d k�Tr2gjðxkÞd k

þ
Xm

j¼m1þ1
lk
j ½dk�

Tr2gjðxkÞd k P 0:
ð22Þ

Taking the limit in (22) as k! þ1, and applying (18) and (20), we obtain
(10). The proof is complete. (

3.2. CONVERGENCE ANALYSIS FOR GENERAL AUGMENTED LAGRANGIAN PROBLEMS

In this subsection, we assume that m1 ¼ 0. That is, the CP has only equal-
ity constraints. In this case, its augmented Lagrangian with convex aug-
menting function (in the sense of [13]) r can be written as

lCPðx;y;rÞ¼ f0ðxÞþ
Xm
j¼1

yjgjðxÞþ rrð�g1ðxÞ; . . . ;�gmðxÞÞ; x2Rn; ð23Þ

where y 2 Rm; r > 0, and r : Rm ! �R is a proper convex augmenting func-
tion.
Suppose that fykg is a sequence in Rm and 0 < rk. The general aug-

mented Lagrangian problems are

ðP2
kÞ inf

x2Rn
lCPðx; yk; rkÞ:

The following lemma establishes a second-order necessary condition for a
local optimal solution to ðP2

kÞ.

LEMMA 3.6. Suppose that ð�g1ðxkÞ; . . . ;�gmðxkÞÞ 2 domðrÞ ¼ fu 2
Rm : �1 < rðuÞ < þ1g and that xk is a local optimal solution of ðP2

kÞ at
which the following condition holds:

ðCÞ
Xm
j¼1

wjrgjðxkÞ ¼ 0; w 2 Nð�gðxkÞjdomðrÞÞ ¼) w ¼ 0;

where w ¼ ðw1; . . . ;wmÞ 2 Rm; gðxÞ ¼ ðg1ðxÞ; . . . ; gmðxÞÞ, and Nð�gðxkÞj
domðrÞÞ is the normal cone to domðrÞ at �gðxkÞ. Furthermore, suppose that
frgjðxkÞ : j ¼ 1; . . . ;mg are linearly independent. Then, the second-order nec-
essary conditions of ðP2

kÞ hold: there exist lk
j ; j ¼ 1; . . . ;m such that

rf0ðxkÞ þ
Xm
j¼1

lk
j r gjðxkÞ ¼ 0 ð24Þ

and for any d 2 Rn satisfying

206 X. X. HUANG AND X. Q. YANG



r gjðxkÞd ¼ 0; j ¼ 1; . . . ;m; ð25Þ

there holds

dTr2 f0ðxkÞdþ
Xm
j¼1

lk
j d

Tr2 gjðxkÞdP 0: ð26Þ

Proof. It is easily seen that lCPðx; yk; rkÞ is a convex composite function
of the following two functions:

hðt; uÞ ¼ t�
Xm
j¼1

ykj uj þ rkrðuÞ; t 2 R1; u 2 Rm;

FðxÞ ¼ ð f0ðxÞ;�g1ðxÞ; . . . ;�gmðxÞÞ; x 2 Rn;

where h is convex. That is,

lCPðx; yk; rkÞ ¼ hðFðxÞÞ:
Obviously,

domðhÞ ¼ R1 � domðrÞ:
In addition, it can be verified that NðFðxkÞjdomðhÞÞ ¼ f0g �Nð�gðxkÞj
domðrÞÞ. Indeed, domðhÞ ¼ R1 � domðrÞ is a covex subset of R1�
Rm:v ¼ ðs;wÞ 2 NðFðxkÞjdomðhÞÞ if and only if for any ðs0;w0Þ 2 R1�
domðrÞ, there holds

ðs� f0ðxkÞÞðs0 � f0ðxkÞÞ þ ðwþ gðxkÞÞTðw0 þ gðxkÞÞO 0:

That is, ðs� f0ðxkÞÞðs0 � f0ðxkÞÞO 0, 8s0 2 R1 (by setting w0 ¼ f0ðxkÞÞ and
ðwþ gðxkÞÞTðw0 þ gðxkÞÞO 0 (by setting s0 ¼ fðxkÞÞ. The former means
s 2 Nðf0ðxkÞjR1Þ ¼ f0g while the latter means w 2 Nð�gðxkÞjdomðrÞÞ. There-
fore, srf0ðxkÞ �

Pm
j¼1 wjr gjðxkÞ ¼ 0 implies that

Pm
j¼1 wjr gjðxkÞ ¼ 0.

Applying the condition (C), we have w ¼ 0. Consequently, v ¼ 0. Now we
apply ([20], Theorem 3.1) to ðP2

kÞ. There exists zk ¼ ðzk1; . . . ; zkmÞ 2
@rð�g1ðxkÞ; . . . ;�gmðxkÞÞ such that

rf0ðxkÞ þ
Xm
j¼1

ykjrgjðxkÞ þ rk
Xm
j¼1

zkj ð�rgjðxkÞÞ ¼ 0;

namely,

rf0ðxkÞ þ
Xm
j¼1
ðykj � rkz

k
j ÞrgjðxkÞ ¼ 0 ð27Þ

and
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maxfdT½r2f0ðxkÞ þ
Xm
j¼1
ðykj � rkz

k
j Þr2gjðxkÞ�d : zk 2 @rð�g1ðxkÞ; . . . ;

� gmðxkÞÞgP 0; 8d 2 KðxkÞ;
ð28Þ

where

KðxkÞ ¼fd 2 Rn : sr f0ðxkÞdþ s
Xm
j¼1
r gjðxkÞd

þ rkrð�g1ðxkÞ � sr g1ðxkÞd; . . . ;�gmðxkÞ � sr gmðxkÞdÞ

O rkð�g1ðxkÞ; . . . ;�gmðxkÞÞ for some s > 0g:

Let

lk
j ¼ ykj � rkz

k
j ; j ¼ 1; . . . ;m:

Then from (27), we have

rf0ðxkÞ þ
Xm
j¼1

lk
j r gjðxkÞ ¼ 0: ð29Þ

By the linear independence of frgjðxkÞ : j ¼ 1; . . . ;mg, we see that the lk
j

ðj ¼ 1; . . . ;mÞ are unique, having nothing to do with the choice of
zk 2 @rð�g1ðxkÞ; . . . ;�gmðxkÞÞ. As a result, (28) can be written as

dT½r2f0ðxkÞ þ
Xm
j¼1

lk
jr2gjðxkÞ�dP0; 8d 2 KðxkÞ: ð30Þ

Note that any d satisfying (25) belongs to KðxkÞ. Hence, for any d such
that (25) holds, (26) holds. (

Remark 3.1. It can be checked that if r is finite on Rm, then domðrÞ ¼
Rm. It follows that Nð�gðxkÞjdomðrÞÞ ¼ f0g. Hence, condition (C) holds
automatically.

THEOREM 3.3. Suppose that 0 < rk;x
k ! �x 2 X0. frgjð�xÞ : j ¼ 1; . . . ;mg

are linearly independent. Then, frgjðxkÞ : j ¼ 1; . . . ;mg are linearly indepen-
dent when k is sufficiently large. Further suppose that xk satisfies the second-
order necessary optimality conditions of ðP2

kÞ stated in Lemma 3.6. Then �x
satisfies the second-order conditions of (CP).

Proof. It is obvious that frgjðxkÞ : j ¼ 1; . . . ;mg are linearly indepen-
dent when k is sufficiently large since xk ! �x.
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By Lemma 3.6, (29) holds. By similar arguments as in the proof of The-
orem 3.1, we can prove that f

Pm
j¼1 jlk

j jg is bounded. As a result, we can
assume without loss of generality that

lim
k!þ1

lk
j ¼ lj; j ¼ 1; . . . ;m:

Taking the limit in (29) as k! þ1, we get

rf0ð�xÞ þ
Xm
j¼1

ljrgjð�xÞ ¼ 0:

Now let d satisfy

r gjð�xÞd ¼ 0; j ¼ 1; . . . ;m:

Since frgjð�xÞ: j ¼ 1; . . . ;mg are linearly independent and xk ! �x, by
Lemma 3.5, there exists dk ! d such that

dTk r2 f0ðxkÞdk þ
Xm
j¼1

lk
j d

T
kr2gjðxkÞdk P 0:

Passing to the limit as k! þ1, we have

dTr2 f0ð�xÞdþ
Xm
j¼1

ljd
Tr2 gjð�xÞdP 0: (

4. Conclusions

We presented a necessary and sufficient condition for the zero duality gap
property via generalized augmented Lagrangian. For a constrained program,
an equivalence in terms of the zero duality gap property was established
between a general nonlinear Lagrangian dual problem and a class of general-
ized augmented Lagrangian dual problems. In the context of a mathematical
programwith both equality and inequality constraints, we proved that the sec-
ond-order conditions of the Lagrangian problems with a convex quadratic
augmenting function converge to that of the original constrained problem. In
the context of a mathematical programwith only equality constraints, for gen-
eral augmented Lagrangian problems with a convex augmenting function, we
showed that the second-order necessary conditions of the augmented
Lagrangian converge to that of the original constrained program.
However, for a mathematical program with both equality and inequality

constraints, we still do not know whether the second-order conditions of
general augmented Lagrangian problems with a convex augmenting func-
tion converge to that of the original constrained program or not. There
may exist some technical difficulty in answering this question. That is, there
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is generally no such a simple explicit expression as (23) for an augmented
Lagrangian if the original constrained program has both equality and
inequality constraints.
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